Search#
The Search
plugin allows you to search in your GeoJson
, TopoJson
, FeatureGroup
or MarkerCluster
objects.
Data#
Let’s get some JSON data from the web - both a point layer and a polygon GeoJson dataset with some population data.
[1]:
import geopandas
states = geopandas.read_file(
"https://raw.githubusercontent.com/PublicaMundi/MappingAPI/master/data/geojson/us-states.json",
driver="GeoJSON",
)
cities = geopandas.read_file(
"https://d2ad6b4ur7yvpq.cloudfront.net/naturalearth-3.3.0/ne_50m_populated_places_simple.geojson",
driver="GeoJSON",
)
/home/runner/micromamba/envs/TEST/lib/python3.12/site-packages/pyogrio/raw.py:198: RuntimeWarning: driver GeoJSON does not support open option DRIVER
return ogr_read(
/home/runner/micromamba/envs/TEST/lib/python3.12/site-packages/pyogrio/raw.py:198: RuntimeWarning: driver GeoJSON does not support open option DRIVER
return ogr_read(
And take a look at what our data looks like:
[2]:
states.describe()
[2]:
density | |
---|---|
count | 52.000000 |
mean | 402.504404 |
std | 1395.100812 |
min | 1.264000 |
25% | 53.440000 |
50% | 100.335000 |
75% | 234.050000 |
max | 10065.000000 |
Look how far the minimum and maximum values for the density are from the top and bottom quartile breakpoints! We have some outliers in our data that are well outside the meat of most of the distribution. Let’s look into this to find the culprits within the sample.
[3]:
import pandas as pd
states_sorted = states.sort_values(by="density", ascending=False)
pd.concat([
states_sorted.nlargest(5, 'density')[['name', 'density']],
states_sorted.nsmallest(5, 'density')[['name', 'density']]
])
[3]:
name | density | |
---|---|---|
8 | District of Columbia | 10065.000 |
30 | New Jersey | 1189.000 |
51 | Puerto Rico | 1082.000 |
39 | Rhode Island | 1006.000 |
21 | Massachusetts | 840.200 |
1 | Alaska | 1.264 |
50 | Wyoming | 5.851 |
26 | Montana | 6.858 |
34 | North Dakota | 9.916 |
31 | New Mexico | 17.160 |
Looks like Washington D.C. and Alaska were the culprits on each end of the range. Washington was more dense than the next most dense state, New Jersey, than the least dense state, Alaska was from Wyoming, however. Washington D.C. has a has a relatively small land area for the amount of people that live there, so it makes sense that it’s pretty dense. And Alaska has a lot of land area, but not much of it is habitable for humans.
However, we’re looking at all of the states in the US to look at things on a more regional level. That high figure at the top of our range for Washington D.C. will really hinder the ability for us to differentiate between the other states, so let’s account for that in the min and max values for our color scale, by getting the quantile values close to the end of the range. Anything higher or lower than those values will just fall into the ‘highest’ and ‘lowest’ bins for coloring.
[4]:
def rd2(x):
return round(x, 2)
minimum, maximum = states["density"].quantile([0.05, 0.95]).apply(rd2)
mean = round(states["density"].mean(), 2)
print(f"minimum: {minimum}", f"maximum: {maximum}", f"Mean: {mean}", sep="\n\n")
minimum: 8.54
maximum: 1040.2
Mean: 402.5
This looks better. Our min and max values for the colorscale are much closer to the mean value now. Let’s run with these values, and make a colorscale. I’m just going to use a sequential light-to-dark color palette from the ColorBrewer.
[5]:
import branca
colormap = branca.colormap.LinearColormap(
colors=["#f2f0f7", "#cbc9e2", "#9e9ac8", "#756bb1", "#54278f"],
index=states["density"].quantile([0.2, 0.4, 0.6, 0.8]),
vmin=minimum,
vmax=maximum,
)
colormap.caption = "Population Density in the United States"
colormap
[5]:
Let’s narrow down these cities to United states cities, by using GeoPandas’ spatial join functionality between two GeoDataFrame objects, using the Point ‘within’ Polygon functionality.
[6]:
us_cities = geopandas.sjoin(cities, states, how="inner", predicate="within")
pop_ranked_cities = us_cities.sort_values(by="pop_max", ascending=False)[
["nameascii", "pop_max", "geometry"]
].iloc[:20]
Ok, now we have a new GeoDataFrame with our top 20 populated cities. Let’s see the top 5.
[7]:
pop_ranked_cities.head(5)
[7]:
nameascii | pop_max | geometry | |
---|---|---|---|
1224 | New York | 19040000 | POINT (-73.98196 40.75192) |
1222 | Los Angeles | 12500000 | POINT (-118.18193 33.99192) |
1186 | Chicago | 8990000 | POINT (-87.752 41.83194) |
1184 | Miami | 5585000 | POINT (-80.22605 25.78956) |
1076 | Philadelphia | 5492000 | POINT (-75.17194 40.00192) |
Map with Search plugin#
Alright, let’s build a map!
[8]:
import folium
from folium.plugins import Search
m = folium.Map(location=[38, -97], zoom_start=4)
def style_function(x):
return {
"fillColor": colormap(x["properties"]["density"]),
"color": "black",
"weight": 2,
"fillOpacity": 0.5,
}
stategeo = folium.GeoJson(
states,
name="US States",
style_function=style_function,
tooltip=folium.GeoJsonTooltip(
fields=["name", "density"], aliases=["State", "Density"], localize=True
),
).add_to(m)
citygeo = folium.GeoJson(
pop_ranked_cities,
name="US Cities",
tooltip=folium.GeoJsonTooltip(
fields=["nameascii", "pop_max"], aliases=["", "Population Max"], localize=True
),
).add_to(m)
statesearch = Search(
layer=stategeo,
geom_type="Polygon",
placeholder="Search for a US State",
collapsed=False,
search_label="name",
weight=3,
).add_to(m)
citysearch = Search(
layer=citygeo,
geom_type="Point",
placeholder="Search for a US City",
collapsed=True,
search_label="nameascii",
).add_to(m)
folium.LayerControl().add_to(m)
colormap.add_to(m)
m
[8]: