```{code-cell} ipython3 --- nbsphinx: hidden --- import folium ``` ## Using `Choropleth` Now if you want to get faster, you can use the `Choropleth` class. Have a look at it's docstring, it has several styling options. Just like the `GeoJson` class you can provide it a filename, a dict, or a geopandas object. ```{code-cell} ipython3 import requests m = folium.Map([43, -100], zoom_start=4) us_states = requests.get( "https://raw.githubusercontent.com/python-visualization/folium-example-data/main/us_states.json" ).json() folium.Choropleth( geo_data=us_states, fill_opacity=0.3, line_weight=2, ).add_to(m) m ``` Then, in playing with keyword arguments, you can get a choropleth in a few lines: ```{code-cell} ipython3 import pandas state_data = pandas.read_csv( "https://raw.githubusercontent.com/python-visualization/folium-example-data/main/us_unemployment_oct_2012.csv" ) m = folium.Map([43, -100], zoom_start=4) folium.Choropleth( geo_data=us_states, data=state_data, columns=["State", "Unemployment"], key_on="feature.id", ).add_to(m) m ``` You can force the color scale to a given number of bins (or directly list the bins you would like), by providing the `bins` argument. ```{code-cell} ipython3 m = folium.Map([43, -100], zoom_start=4) folium.Choropleth( geo_data=us_states, data=state_data, columns=["State", "Unemployment"], key_on="feature.id", fill_color="YlGn", bins=[3, 4, 9, 11], ).add_to(m) m ``` You can also enable the highlight function, to enable highlight functionality when you hover over each area. ```{code-cell} ipython3 m = folium.Map(location=[48, -102], zoom_start=3) folium.Choropleth( geo_data=us_states, data=state_data, columns=["State", "Unemployment"], key_on="feature.id", fill_color="YlGn", fill_opacity=0.7, line_opacity=0.2, legend_name="Unemployment Rate (%)", highlight=True, ).add_to(m) m ``` You can customize the way missing and `nan` values are displayed on your map using the two parameters `nan_fill_color` and `nan_fill_opacity`. ```{code-cell} ipython3 m = folium.Map([43, -100], zoom_start=4) messed_up_data = state_data.drop(0) messed_up_data.loc[4, "Unemployment"] = float("nan") folium.Choropleth( geo_data=us_states, data=messed_up_data, columns=["State", "Unemployment"], nan_fill_color="purple", nan_fill_opacity=0.4, key_on="feature.id", fill_color="YlGn", ).add_to(m) m ``` Internally Choropleth uses the `GeoJson` or `TopoJson` class, depending on your settings, and the `StepColormap` class. Both objects are attributes of your `Choropleth` object called `geojson` and `color_scale`. You can make changes to them, but for regular things you won't have to. For example setting a name for in the layer controls or disabling showing the layer on opening the map is possible in `Choropleth` itself. ```{code-cell} ipython3 m = folium.Map([43, -100], zoom_start=4) choropleth = folium.Choropleth( geo_data=us_states, data=state_data, columns=["State", "Unemployment"], key_on="feature.id", fill_color="YlGn", name="Unenployment", show=False, ).add_to(m) # The underlying GeoJson and StepColormap objects are reachable print(type(choropleth.geojson)) print(type(choropleth.color_scale)) folium.LayerControl(collapsed=False).add_to(m) m ```