# Geodedetic image overlay ```{code-cell} ipython3 import numpy as np def sample_data(shape=(73, 145)): nlats, nlons = shape lats = np.linspace(-np.pi / 2, np.pi / 2, nlats) lons = np.linspace(0, 2 * np.pi, nlons) lons, lats = np.meshgrid(lons, lats) wave = 0.75 * (np.sin(2 * lats) ** 8) * np.cos(4 * lons) mean = 0.5 * np.cos(2 * lats) * ((np.sin(2 * lats)) ** 2 + 2) lats = np.rad2deg(lats) lons = np.rad2deg(lons) data = wave + mean return lons, lats, data lon, lat, data = sample_data(shape=(73, 145)) lon -= 180 ``` ```{code-cell} ipython3 %matplotlib inline import matplotlib cm = matplotlib.cm.get_cmap("cubehelix") normed_data = (data - data.min()) / (data.max() - data.min()) colored_data = cm(normed_data) ``` ## Bad ```{code-cell} ipython3 import folium m = folium.Map(location=[lat.mean(), lon.mean()], zoom_start=1) folium.raster_layers.ImageOverlay( image=colored_data, bounds=[[lat.min(), lon.min()], [lat.max(), lon.max()]], opacity=0.25, ).add_to(m) m ``` ## Good ```{code-cell} ipython3 m = folium.Map(location=[lat.mean(), lon.mean()], zoom_start=1) folium.raster_layers.ImageOverlay( image=colored_data, bounds=[[lat.min(), lon.min()], [lat.max(), lon.max()]], mercator_project=True, opacity=0.25, ).add_to(m) m ``` ## Same as above but with cartopy ```{code-cell} ipython3 import cartopy.crs as ccrs from cartopy.img_transform import warp_array source_extent = [lon.min(), lon.max(), lat.min(), lat.max()] new_data = warp_array( colored_data, target_proj=ccrs.GOOGLE_MERCATOR, source_proj=ccrs.PlateCarree(), target_res=data.shape, source_extent=source_extent, target_extent=None, mask_extrapolated=False, ) m = folium.Map(location=[lat.mean(), lon.mean()], zoom_start=1) folium.raster_layers.ImageOverlay( image=new_data[0], bounds=[[lat.min(), lon.min()], [lat.max(), lon.max()]], opacity=0.25, ).add_to(m) m ``` TODO: Try [rasterio](https://github.com/mapbox/rasterio/blob/ca75cf0a842943c1b3da4522e6ea3500215130fd/docs/reproject.rst). Rasterio can warp images and arrays. ## Compare to original From https://scitools.org.uk/cartopy/docs/latest/gallery/scalar_data/waves.html ![](https://scitools.org.uk/cartopy/docs/latest/_images/sphx_glr_waves_001.png)